
Experimental Allocation of Safety-Critical
Applications on Reconfigurable Multi-Core

Architecture
Louis Sutter∗, Thanakorn Khamvilai∗, Philippe Monmousseau∗, John B. Mains∗, Eric Feron∗,

Philippe Baufreton†, François Neumann†, Madhava Krishna‡, S. K. Nandy‡,
Ranjani Narayan§ and Chandan Haldar§

∗School of Aerospace Engineering, Georgia Institute of Technology, Atlanta, USA
Email: {lsutter6, thanakornkhamvilai,

philippe.monmousseau, jmains3, feron}@gatech.edu
†Safran Electronics & Defense, Massy, France

Email: {philippe.baufreton, francois.neumann}@safrangroup.com
‡CAD Laboratory, Indian Institute of Science, Bangalore, India

Email: madhav@cadl.iisc.ernet.in, nandy@cds.iisc.ac.in
§Morphing Machines Pvt. Ltd., Bangalore, India

Email: {ranjani, chandan}@morphing.in

Abstract—Multi-core processors pervade numerous industries
but they still represent a challenge for the aerospace industry,
where strong certification of every components is required. One
way to make them enforce safety-criticality constraints is to
ensure reallocation of critical tasks on the chip when they are
affected by hardware faults.

This paper describes and compares different models of a task
reallocation problem for a reconfigurable multi-core architecture.
It also presents the first version of the macroscopic model made
of Raspberry Pi that was built to represent the multi-core
architecture and to test the task allocation algorithm on an actual
system, showing the increased robustness that the reallocation
algorithm enables while cores are made faulty.

Index Terms—multi-core, reconfigurable, safety-critical, inte-
ger linear programming, Raspberry Pi

I. INTRODUCTION

The world of embedded systems architecture is experiencing
a major change with the onset of multi-core and many-core
processors. They carry important benefits over single-core
processors, bringing more computational power without
augmenting chip’s internal frequency, and thus without
increased energy consumption or increased heating. Many
industries are already taking advantage of such processors,
and the aerospace industry could really benefit from the
computational power and redundancy inherent to these
processors.

Firstly, the computational power provided by parallelism
would enable to execute computationally demanding

This effort has been funded in part by SAFRAN and by the National Science
Foundation, Grants CNS 1544332 and 1446758.

applications on board, like engine health monitoring
applications, which conventional embedded chips cannot
process efficiently. This particular type of application has to
be performed on board since airline companies cannot afford
to stop a plane on the ground for a sufficient time to transfer
the large data generated by engine sensors and analyze them
out of the plane afterwards.

Secondly, the large number of available cores on a many-
core processor enables graceful degradation on the chip:
when some parts of the processor are subjected to hardware
faults, affected applications can be reallocated to a different
area of the processor and continue to support their intended
functions. This process can ensure improved resilience of the
system.

Despite these benefits, multi-core processors used in
avionics systems represent a challenge for the aerospace
industry. Since applications running in parallel on the chip
share hardware resources, they may interfere with each other
and safety-critical applications may be affected by non-critical
ones, for example in the case they simultaneously try to
access the same resources. This jeopardizes the determinism
of software behavior running on multi-core processors and
therefore represents an obstacle to the certification of their
use in aircraft.

This paper presents several variations of a task allocation
algorithm for a specific many-core architecture called
REDEFINE1, developed by the company Morphing Machines

1REDEFINE is a registered trademark of Morphing Machines.

978-1-5386-4112-5/18/$31.00 ©2018 IEEE

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on September 01,2020 at 14:37:35 UTC from IEEE Xplore. Restrictions apply.

and the Indian Institute of Science (IISc), and applied to
avionics control applications in collaboration with Safran
Electronics & Defense. The implementations of the allocation
algorithm differ from each other in the reallocation problem
formulation and the type of solver they use. In one case, the
solver is a commercial Integer Linear Programming (ILP)
solver. In the other case, it is a Satisfiability (SAT) solver.
Their performances are then compared for different problem
sizes, that is the number of cores to handle on the processor.

We finally present a simple experiment that is the first step
of the building of a macroscopic model of the REDEFINE
architecture. This first experimental system shows how the
allocation algorithm behaves on actual hardware and illustrates
the increased robustness it enables. It also demonstrates the
ability of the reallocation algorithm to detect simple hardware
faults. Last, the hardware implementation enables the identi-
fication of more complex, actual faults.

II. REDEFINE ARCHITECTURE

The REDEFINE many-core architecture [1] of interest
to this paper is an architecture in development at the
company Morphing Machines and the Indian Institute of
Science. Unlike other architectures, REDEFINE features a
dynamic reconfiguration capability: applications running on
the chip can be dynamically allocated to different cores of
the processor. This feature motivates the development of
an algorithm that computes the allocation of applications
according to the state of degradation of the chip and the
criticality of each application.

We now present the main elements of the REDEFINE
architecture to support the rest of the paper. For more details,
the interested reader is invited to look at [2].

REDEFINE is made of two main elements: an Executable
Fabric and a Resource Manager. It is connected to an external
memory and a host, as shown in Fig. 1.

Fig. 1: The different components of the REDEFINE
architecture.

The Execution Fabric is a toroidal mesh of a certain
number of Tiles connected through the Network on Chip
(NoC), as shown in Fig. 2. Each Tile includes a router (shown
as a pink circle) and a Computer Resource (shown as a gray
box and denoted CR thereafter) that is responsible for actual
computations. Some extra Tiles are added on one edge of
the Fabric to ensure the communication with the Resource
Manager. These “Gateway Tiles” support routing functions
only.

Fig. 2: Example of a toroidal mesh topology of the NoC for
a 4× 4 fabric. The pink circles represent routers, and the

gray squares represent Compute Resources.

The REDEFINE Resource Manager (RRM) is the
interface between the Fabric and the host that creates
the decomposition of applications into sequences of basic
elements called HyperOps. As such, the RRM is in charge
of allocating parts of the Fabric to the different HyperOps,
launching them, getting the results through the Gateway Tiles,
and transferring them to the host.

The sequences of HyperOps are generated from C code
during the offline compilation process, which also computes
their spatial configuration that must be respected on the
REDEFINE Fabric (Fig. 3). Each HyperOp is designed to
be executed by one REDEFINE Tile, the basic element of
the Fabric. The necessity to respect the orientation of the
HyperOps pattern comes from the XY deterministic routing
algorithm [3] used on the Fabric: to reach its destination,
a packet first moves horizontally along the X-axis to reach
the destination’s column and then vertically along the Y-axis
to reach its row. HyperOps that need to communicate are
therefore required to have a specific orientation.

An example of spatial configuration for an application com-
puted by the compiler is given in Fig. 4. It gives the relative
position of the HyperOps, also denoted “True Application
Nodes” thereafter, that must be assigned to some Tiles of the
Fabric. These True Application Nodes therefore require the
CR of those Tiles. The router of some extra Tiles may also be

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on September 01,2020 at 14:37:35 UTC from IEEE Xplore. Restrictions apply.

Fig. 3: Illustration of the compilation process.

needed for intra-application communication between Applica-
tion Nodes. To ensure spatial partitioning of the applications
on the Fabric and to prevent another application from using
them, these extra Tiles are considered as entirely allocated to
the application as well: the term “Ghost” Application Nodes
then denotes fictitious Nodes that must be assigned to such
Tiles.

Fig. 4: Example of the spatial configuration of an
application. Colored squares represent “True Nodes”,

corresponding to a Tile whose CR must be allocated to the
application. A “Ghost” Application Node (in gray) is added
because the top right Tile’s router is used by the application

for intra-application communication. Such a Node is
considered to be part of the application.

Because of its supervisory role, the RRM is in charge of
executing the task allocation algorithm detailed in this paper.
This implies that the RRM is aware of the faults occurring
on the Fabric to compute an appropriate allocation. A simple
model of faults is considered, in which each component of
a Tile, the CR and the router, can be either functional or
permanently faulty.

To detect these faults, an appropriate observation system
is used. This observation system does not necessarily require
instrumentation of the hardware since some checks can be
performed at the software level. For example, sending a
message to the different Tiles to check that they respond, as
is shown in the experiment below (see section V), enables
the detection of router faults, whereas a triple redundant
system implementation can identify computational errors
corresponding to a CR fault. Detecting faults at a lower

level thanks to an instrumentation can also be imagined, for
example by checking voltage of some specific points in the
architecture. The goal of the macroscopic model presented
below is also to experiment with other ways to detect faults.

III. NEW TASK ALLOCATION ALGORITHM

A. Motivations

Reference [2] introduces a first task allocation algorithm
for the REDEFINE architecture that is able to compute a
new allocation of the applications on the NoC, given the
following information: the size of the REDEFINE Fabric,
the status of the Tiles, and a set of applications with their
pattern as computed by the compiler. This algorithm is based
on an Integer Linear Programming (ILP) formulation of
the allocation problem that is solved using the Gurobi [4]
commercial ILP solver each time a fault is detected.

After having studied this first algorithm and its
implementation, it appears that the solver and the optimization
problem formulation can be improved.

1) Modification of the solver: It turns out that the problem
was formulated as a Pseudo-Boolean problem, that is, an ILP
problem with binary variables only [5]. The constraints are
Pseudo-Boolean (PB) constraints i.e. inequalities on a linear
combination of boolean variables:

A1x1 + A2x2 + ... + Anxn ≥ K

where A1, A2, ..., An,K are real constants
and x1, x2, ..., xn ∈ {0, 1}.

Such Pseudo-Boolean problems can be converted into
Satisfiability (SAT) problems [6] and use efficient open-
source SAT solvers like MiniSat, detailed in [7]. Since
MiniSat is written in C++ and includes an extension,
MiniSat+ detailed in [6], to handle PB problems, it offers a
low-cost and free alternative to Gurobi, having in mind an
implementation on the REDEFINE architecture.

2) Modification of the problem formulation: The problem
formulation in [2] presents two characteristics that can be
improved.

First, the solver may be called up to three times for one
fault. This occurs when the first try, reallocating only the
affected application, and the second try, reallocating the
affected application and the lower-priority ones, both lead to
an unfeasible problem. The third call is then performed after
having dropped all lower-priority applications (see [2] for
more details).

Second, the optimization problem formulation given in
[2] drops all non-critical applications when a fault affects a
safety-critical application that cannot be relocated without

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on September 01,2020 at 14:37:35 UTC from IEEE Xplore. Restrictions apply.

touching the other applications.

The alternate optimization problem formulation given
below allows the allocator to be less conservative in terms of
the number of applications being dropped. It also requires at
most one SAT solver call per failure, while allowing more
applications to run.

B. Definitions and parameters

Before giving the new formulation of the problem, some
definitions and parameters concerning the mathematical
representation of the architecture must be given.

The Network on Chip’s topology is described by an
undirected graph. Each vertex represents a Tile and each edge
represents a communication link between the routers of two
Tiles. Such a link is called a “NoC Path”.

The matrix G is the NT ×Npaths incidence matrix of the
graph representing the NoC, where NT is the number of Tiles
on the fabric and Npaths is the number of NoC Path.

Gij =

{
1 if the Tile i and the NoC Path j are incident
0 otherwise

The Napps different applications that are to be executed
on the platform are represented by Napps undirected graphs.
On REDEFINE, the compiler computes the number of
Compute Resources (and their spatial configuration) that
each application requires, with the objective of maximizing
parallelism. Therefore, each vertex of a graph represents a
Compute Resource that will be assigned to the application
and each edge represents a communication path that links the
routers associated to two of these Compute Resources.

The matrix Ak is the Nk
nodes × Nk

links incidence matrix
representing the graph of application k, where Nk

nodes is its
number of nodes, denoted “Application Nodes” (corresponding
to the HyperOps mentioned in section II), and Nk

links is its
number of edges, denoted “Application Links”.

Ak
ij =

1 if the Node i and the Link j of application
graph k are incident

0 otherwise

Nnodes =
∑Napps

k=1 Nk
nodes is the total number of Applica-

tion Nodes.
Nlinks =

∑Napps

k=1 Nk
links is the total number of Application

Links.

An overall application graph represented by the incidence
matrix A is constructed from the Ak (k = 1, . . . , Napps)
matrices as such:

A =

A
1

. . .
Ak

 is a Nnodes ×Nlinks matrix.

Applications Nodes and Links receive therefore a global
numbering corresponding to their position in this overall
matrix.

C. New formulation
In the new formulation presented here, allocating or

dropping an application is captured by additional boolean
variables, such that one call to the SAT solver is sufficient to
determine the optimal choice of applications to reallocate and
to drop. Applications not directly affected by the fault are
allowed to move, though penalties are introduced to prevent
unnecessary moves.

1) General form of the formulation: As explained pre-
viously, the allocation problem is formulated as a Pseudo-
Boolean problem of the form:

maximize cTx
subject to M1x ≤ b1

M2x = b2

and x is a binary vector.

x is the vector of decision variables, c the coefficients of
the objective function and M1, M2, b1 and b2 are parameters
that derive from the aggregation of the constraints of the
problem.

2) Decision variables: The decision variables of the prob-
lem describe the mapping of the Application Nodes to the
Compute Resources of the Tiles on the NoC and the mapping
of the Application Links to the NoC communication paths.
In addition, two types of variables are used to represent the
decision of dropping or moving an application. The vector x
is thus made up of:

XCR→apps
ij =

1 if the CR of Tile i is allocated
to the Application Node j

0 otherwise

Xpaths→links
ij =

1 if the NoC Path i is allocated to
the Application Link j

0 otherwise

rk =

{
1 if the application k is running
0 if it is dropped

MN
j =

1 if the Application Node j is

moved from its previously allo-
cated CR

0 otherwise

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on September 01,2020 at 14:37:35 UTC from IEEE Xplore. Restrictions apply.

where XCR→apps is a NT ×Nnodes matrix; Xpaths→links is
a Npaths ×Nlinks matrix; r is a Napps × 1 matrix and Mj is
a Nnodes × 1 matrix.

3) Objective function: The objective function is used in
order to maximize the number of executed applications while
minimizing the number of reallocation:

max

Napp∑
k=1

rk −
Nnodes∑
j=1

MN
j

Nnodes + 1

 (1)

where rk and MN
j are the decision variables previously

introduced.

The coefficient 1
Nnodes+1 ensures that an application is

always moved rather than dropped.

4) Constraints:
a) Binary variables: All the decision variables are

binary.

b) Resource allocation and partitioning: Several
equations express the constraints of allocating the resources
of the Fabric to applications while enforcing partitioning on
the chip.

First, a CR can be allocated to at most one application, as a
way to enforce spatial partitioning of applications on the NoC,
i.e.

∀i = 1, . . . , NT ,

Nnodes∑
k=1

XCR→apps
ik ≤ 1. (2)

Each running Application Node must be assigned to exactly
one CR, i.e.

∀i = 1, . . . , Nnodes,

NT∑
k=1

XCR→apps
ki = rkN (i). (3)

kN (i) is the application number corresponding to Application
Node i.

A NoC Path can be allocated to at most one Application
Link2, i.e.

∀i = 1, . . . , Npaths,

Nlinks∑
k=1

Xpaths→links
ik ≤ 1. (4)

2This does not mean that this NoC Path cannot be used for other communi-
cation purposes on the NoC, but only one of the Application Link computed
by the compiler for the applications can be allocated to that NoC Path.

Each running Application Link must be assigned to exactly
one NoC Path, i.e.

∀i = 1, . . . , Nlinks,

Npaths∑
k=1

Xpaths→links
ki = rkL(i). (5)

kL(i) is the application number corresponding to Application
Link i.

c) Conformity to the architecture: An Application Link
that connects two Application Nodes must be allocated to a
NoC Path connecting the two CRs on which those two nodes
have been mapped, i.e.

XCR→apps A = G Xpaths→links. (6)

d) Reallocating several applications: A given Applica-
tion Node can either remain affected to the same Tile, either
be moved, either be dropped:

∀i = 1, . . . , NT , ∀j = 1, . . . , Nnodes,

(1− rkN (j)) + MN
j + XCR→apps

ij = XCR→apps
old ij ,

(7)

with XCR→apps
old the parameter containing the mapping

between CR and Application Nodes computed during the
previous allocation.

This constraint is ignored for the initial allocation.

e) Priorities: The choice is made to execute the safety-
critical application for all time, and then to execute applica-
tions with low priority only if every applications with higher
priority can be executed. This choice ensures that the alloca-
tion algorithm does not drop a high-level-priority application
to execute several low-level-priority ones that requires fewer
CR. This is written:

r1 ≥ 1

∀k = 2, . . . , Napp,

rk−1 ≥ rk.

(8)

Application 1 has the highest priority and application Napp

has the lowest one.

f) Faults: Constraints inherited from [2] make the algo-
rithm take into account faulty CRs or routers. Within a Tile
i:

• If both the Compute Resource and the router are healthy,
any Application Node can be mapped on the tile.

• If the Compute Resource is faulty but the router is
healthy, only “Ghost” Application Nodes can be mapped
on the Tile i. ∑

k∈true nodes

XCR→apps
ik = 0 (9)

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on September 01,2020 at 14:37:35 UTC from IEEE Xplore. Restrictions apply.

• If the router is faulty, regardless of the health of the
Compute Resource, then no Application Nodes can be
mapped on the Tile i.

Nnodes∑
k=1

XCR→apps
ik = 0 (10)

Hence, a reallocation is needed each time a CR fault occurs
on a Tile where a “True” Node was mapped or a router fault
occurs on a Tile where any node was mapped. The detection
of these fault is assumed for the model but needs to be
implemented in practice.

g) Spatial Orientation: To ensure correct orientation of
applications, a set of constraint used in [2] is also needed.
In order to enforce this, the numbering of the Tiles on the
NoC is used. For example, as illustrated in Fig. 5, a Tile has
always a number difference of −1 with its right neighbor and
+N/row with its top neighbor, where N/row is the number
of Tile per row of the NoC (N/row = 4 in our example).

The difference between the numbers of the contiguous
pairs of Tiles allocated to an application must match the
orientation computed by the compiler.

Fig. 5: By ensuring that the difference between two Tiles’
numbers allocated to an application is equal to a specific
number, the spatial orientation of the application can be

enforced.

IV. ALGORITHMS COMPARISON

The previous modifications enabled to obtain four different
allocation algorithms by choosing one the two available
solvers, CVX/Gurobi or MiniSat+, and one model of the
allocation problem, either the first formulation detailed in
[2] or the new one presented here. In examples, the three
applications shown in Fig. 6 are considered.

After having forced the same initial configuration for the
two algorithms, their behavior are compared for the same
fault sequence in Fig. 7.

The second algorithm enables to better use the remaining
Tiles of the REDEFINE Fabric so that more applications can

(a) Application 1,
highest priority,

critical

(b) Application 2,
intermediate

priority, non-critical

(c) Application 3,
lowest priority,

non-critical

Fig. 6: The spatial configurations of the three different
applications that are to be executed on the platform. The

gray squares represent the “Ghost” Nodes of the
applications, which only use the router of the Tile for

intra-application communication.

First algorithm Second algorithm

Fig. 7: Comparison of the two algorithms for the same CR
faults sequence, represented by red squares. When the fault
affects the critical application, the first algorithm drops all the
other ones, contrary to the second one who manages to keep
all the applications.

continue to be executed, even after a high-priority application
is affected.

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on September 01,2020 at 14:37:35 UTC from IEEE Xplore. Restrictions apply.

This algorithm can require an execution time per call
from 20% to 60% higher than the previous algorithm.
However, its advantage is that it is called no more than once
after each failure, whereas the previous one could be called
up to three times, which is profitable on average as seen below.

Considering the different choices of couple Algorithm -
Solver, their relative performance were evaluated to choose
the one that is the most appropriate for the macroscopic
model being built.

To compare their performance for a given network size,
for example a 4× 4 square mesh, random sets of applications
and random sequences of faults were generated, before
measuring the required time for the couple Formulation
- Solver to compute the new allocation. For this test, the
algorithms were all run using Matlab, combined with the
CVX modeling framework [8] and the solver Gurobi [4]
on the one hand, and on the other hand combined with the
SAT-solver MiniSat [7] [9] and its extension for PB problems
MiniSat+ [6] [9], both written in C++ and called from Matlab.

The results of this comparative study are given in Fig. 8 for
both a 4 × 4 and a 6 × 6 square mesh. The raw results were
the computation time after each failure depending on the
number of Application Nodes to handle, which is the main
parameter determining the size of the problem to solve. Then,
the mean time as well as the standard deviation were plotted
for every Node number, in order to quantify more precisely
how consistent each of the four couples Algorithm - Solver is.

On a relatively small network of 4×4 Tiles, the comparison
in Fig. 8 shows that the new formulation, corresponding to
red and green plots, is more regular in terms of computation
time since one call to the solver per failure is ensured in this
new version. In addition, the SAT solver enables to obtain
smaller mean times for small numbers of applications nodes.
Therefore, the couple New Formulation - MiniSat appears as
the best choice for the 4×4 network used for the experiment.

However, as the size of the network increases, the mean
computation time for this algorithm grows quickly and with
high standard deviation. It becomes then necessary to use the
new formulation with the CVX / Gurobi solver that benefits
from a better scalability.

V. DEMONSTRATION

A. Hardware Replication

As previously discussed in section II, the REDEFINE chip
is still being developed; however, its multi-core architecture
can be reproduced by using a group of small embedded
computers. Each of these computers is called a “Tile”, and
represents one core of the actual REDEFINE architecture.
The subtask of software running on one of these Tiles is

Fig. 8: Statistical comparison of the computation time of the
different algorithms for random applications and faults on a

4× 4 and 6× 6 mesh, as a function of the number of
Application Nodes to handle. Stars ∗ represent the mean

time and the distance between two triangles ∆ represent the
standard deviation. Times were obtained on a personal laptop
with an Intel Core i7 CPU at 2.40 GHz and 8 GB of RAM.

called an “Application Node”.

To replicate a 4× 4 chip fabric, 17 Raspberry Pi computers
are used: the first 16 ones are to represent the Tiles of
the Fabric, and the last one acts as the resource manager
(RRM) as shown in Fig. 10. The Tile runs the user-defined
Application Node and the fault actuating and detection
system, which updates its own status to the resource manager.
The resource manager computes allocations based on tiles’
status, by using the algorithm discussed in section III, and

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on September 01,2020 at 14:37:35 UTC from IEEE Xplore. Restrictions apply.

transmits back the output.

The Tiles that fail to update their own status within a
timeout limit are considered as “faulty Tiles”. The non-faulty
Tiles that are not running any application nodes at a given
configuration are called “free Tiles”.

B. Fault Actuating and Detection System

Two types of high-level hardware faults, which are faulty
compute resources and faulty routers, were addressed in [2]. To
reproduce these faults, the fault actuating system is designed
using two ON/OFF switches (Fig. 9) corresponding to each
type of failures in order to allow a demonstrator to decide
which faults to occur on which Tiles. Once the switch is
triggered, the voltage is captured, converted to a digital data,
and forwarded to the resource manager as the current status
of the Tile.

Fig. 9: Hardware associated with each Raspberry Pi Tile.
The RGB-LED (bottom-left corner) represents the LED

application. The red LED (right side) indicates an healthy
Tile when turned on. Two switches are for triggering two

types of faults.

C. Scenario

In the demonstration, three applications with a distinct
usage of computer resources and a unique spatial configuration
(Fig. 10) are considered and represented by a specific color
of RGB-LED, allowing us to visualize the reconfiguration
of Application Nodes. Each of these applications also
has the relative priority based on its safety-criticality for
reconfiguration, meaning that the algorithm is allowed to shut
down the lower-priority applications to maintain the execution
of the higher-priority ones in case of Compute Resources
shortage. The LED color assigned to each application, its
relative priority, and its spatial configuration are given by
Table I.

TABLE I: Three applications’ LED colors, relative priorities,
and spatial configurations.

Application Color Priority Spatial Configuration
1st Blue Highest 2-row by 3-column
2nd Green Intermediate 2-row by 2-column
3rd Yellow Lowest 2-row by 1-column

Remark 1: The free Tiles are represented by turning on
the RGB-LED to the white color, and the faulty Tiles are
represented by turning both LEDs off.

Remark 2: The red LED is controlled solely by the analog
input voltage from the switches. Since there is no software
associated with this LED, it properly indicates a faulty Tile
when turned off.

D. Communication Protocol between Tiles

To establish the communication between Raspberry Pi
Tiles, a local area network (LAN) has been developed. In
this network, every Tile is connected to a common routing
switch and communicates through a MQTT protocol [10].
This protocol is a publish-subscribe-based messaging network
protocol working as a surface layer of the standard TCP/IP
protocol. Every data published or subscribed using MQTT
has to be associated with its own unique “Topic”, and is
queued by the central handler called “Broker”

To implement the MQTT protocol for this demonstration,
the resource manager runs the Open-source MQTT-broker
named Mosquitto [11], subscribes to a status topic from
every single Tile, and publishes the result of the allocation
algorithm. On the other hand, each Tile only subscribes to
the result topic of the resource manager, and publishes its
own status.

Note that the XY routing algorithm mentioned in section
II can be implemented as a constraint on the software-level
of the communication protocol; however, this is not required
on the LED application because there is no communication
occurring between the Application Nodes.

E. Results

The demonstration result is shown by a sequence of
pictures as in Fig. 11. This demonstration is initialized as
shown in Fig. 10. Then, the demonstrator randomly makes
the Tiles become faulty by either switching off, unplugging
the power cable, or removing the Ethernet cable. Fig. 11a,
11c, 11e, and 11g show which Tiles are faulty while Fig 11b,
11d, 11f, and 11h show the new configuration according to
the current faulty Tiles.

Note that the faulty Tile that came from removing the
Ethernet cable still had its RGB-LED lights up, but it lost
the connection to the entire system. Therefore, the resource
manager considered it as a faulty Tile.

VI. CONCLUSION

The task allocation algorithm presented in our last paper
has been improved at two levels. Firstly, a new formulation
of the task allocation problem enables to add more flexibility

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on September 01,2020 at 14:37:35 UTC from IEEE Xplore. Restrictions apply.

Fig. 10: Hardware setup using Raspberry Pi computers for REDEFINE Tiles and the resource manager.

in the algorithm by allowing the reallocation of several
applications, and therefore enables to keep more applications
running on the architecture. Moreover, a unique call to the
solver for each reallocation is now guaranteed. Secondly,
instead of the commercial ILP solver used previously, a SAT
solver has been used to solve the ILP formulation of the
reallocation problem. This second solver has the benefits to
be open-source and quite easily embeddable.

The different versions of the task allocation algorithm have
been compared in terms of behavior and computation time.
For relatively small architecture of about twenty cores, the
new formulation coupled with the SAT solver is the most
efficient. However, tests on bigger architectures show that the
scalability is better for the commercial solver coupled with
the new formulation.

This paper also presented the experiment that was built. The
experiment shows the execution of the reallocation algorithm
on concrete hardware while enabling to implement some basic
fault detection systems that are required for the algorithm.
This experiment is also the first step in the building of a
macroscopic model of the REDEFINE architecture hosting
the reallocation algorithm.

The next steps for this macroscopic model include
implementing complementary fault detection systems, for
example ones enabling to detect computation faults. One
possible solution is the use of Triple Redundancy of the
applications on the multi-core Fabric, which would also have
the benefit of ensuring continuity of service of the application
during the reallocation of the faulty unit, since the two
healthy units can continue to run. An other important step
will be to run non trivial parallel applications on the Fabric,
like control applications.

Finally, this macroscopic model of REDEFINE will help
to improve the actual REDEFINE architecture in terms of
safety for a potential use in avionics systems, for example, by
exploring ways of removing the single-point of failure that
represents the Resource Manager by distributing its tasks on
the Fabric itself, which may lead to some interesting questions.

REFERENCES

[1] M. Alle, K. Varadarajan, A. Fell, C. R. Reddy, J. Nimmy, S. Das,
P. Biswas, J. Chetia, A. Rao, S. K. Nandy, and R. Narayan, “REDE-
FINE: runtime reconfigurable polymorphic ASIC,” ACM Transactions
on Embedded Computing Systems, vol. 9, no. 2, 2009.

[2] T. Guillaumet, E. Feron, P. Baufreton, F. Neumann, K. Madhu, M. Kr-
ishna, S. K. Nandy, R. Narayan, and C. Haldar, “Task allocation of
safety-critical applications on reconfigurable multi-core architectures,”
in 2017 IEEE/AIAA 36th Digital Avionics Systems Conference (DASC),
Sept 2017, pp. 1–10.

[3] V. Rantala, T. Lehtonen, J. Plosila et al., Network on chip routing
algorithms. Turku Centre for Computer Science, 2006.

[4] “Gurobi optimizer reference manual,” Gurobi Optimization, Inc., 2016,
http://www.gurobi.com.

[5] Dingzhu Du, Jun Gu, Panos M. Pardalos, Satisfiability Problem: Theory
and Applications. American Mathematical Society, 1997.

[6] N. Eén and N. Sörensson, “Translating Pseudo-Boolean Constraints into
SAT,” in Journal on Satisfiability, Boolean Modeling and Computation
2, 2006, pp. 1–25.

[7] ——, “An Extensible SAT-solver [extended version 1.2],” in 6th Inter-
national Conference on Theory and Applications of Satisfiability Testing,
2003.

[8] M. Grant and S. Boyd, “CVX: Matlab Software for Disciplined Convex
Programming, version 2.1,” http://cvxr.com/cvx, March 2014.

[9] N. Eén and N. Sörensson, “The MiniSat Page,” http://minisat.se/.
[10] U. Hunkeler, H. L. Truong, and A. Stanford-Clark, “MQTT-S x2014;

A publish/subscribe protocol for Wireless Sensor Networks,” in Com-
munication Systems Software and Middleware and Workshops, 2008.
COMSWARE 2008. 3rd International Conference on, Jan 2008, pp. 791–
798.

[11] R. A. Light, “Mosquitto: server and client implementation of the MQTT
protocol,” The Journal of Open Source Software, vol. 2, no. 13, p. 265,
may 2017. [Online]. Available: https://doi.org/10.21105/joss.00265

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on September 01,2020 at 14:37:35 UTC from IEEE Xplore. Restrictions apply.

(a) Switching off one Tile running the 3rd application (b) Algorithm reconfigures only the 3rd application

(c) Unplugging the power from one Tile running the 3rd application (d) Algorithm reconfigures only the 3rd application

(e) Removing the Ethernet cable from one Tile running the 2nd

application
(f) Algorithm reconfigures the 2nd and the 3rd application

(g) Switching off one Tile running the 1st application (h) Algorithm drops the 3rd application and reconfigures the 2nd and
the 1st application

Fig. 11: Result of the task allocation algorithm. A full video of the demo is available on the clickable link
https://www.dropbox.com/s/5xbz2d13xjz4zmw/demo video 07 18.mp4?dl=0

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on September 01,2020 at 14:37:35 UTC from IEEE Xplore. Restrictions apply.

